Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 4, 2026
- 
            Designing robots to support high-stakes teamwork in emergency settings presents unique challenges, including seamless integration into fast-paced environments, facilitating effective communication among team members, and adapting to rapidly changing situations. While teleoperated robots have been successfully used in high-stakes domains such as frefght- ing and space exploration, autonomous robots that aid high- stakes teamwork remain underexplored. To address this gap, we conducted a rapid prototyping process to develop a series of seemingly autonomous robots designed to assist clinical teams in the Emergency Room. We transformed a standard crash cart—which stores medical equipment and emergency supplies into a medical robotic crash cart (MCCR). The MCCR was evaluated through feld deployments to assess its impact on team workload and usability, identifed taxonomies of failure, and refned the MCCR in collaboration with healthcare professionals. Our work advances the understanding of robot design for high-stakes, time-sensitive settings, providing insights into useful MCCR capabilities and considerations for effective human-robot collaboration. By publicly disseminating our MCCR tutorial, we hope to encourage HRI researchers to explore the design of robots for high-stakes teamwork.more » « lessFree, publicly-accessible full text available March 4, 2026
- 
            We present a search for long-lived particles (LLPs), produced in kaon decays, that decay to two muons inside the ICARUS neutrino detector. This channel would be a signal of hidden sector models that can address outstanding issues in particle physics such as the strong CP problem and the microphysical origin of dark matter. The search is performed with data collected in the Neutrinos at the Main Injector (NuMI) beam at Fermilab corresponding to protons-on-target. No new physics signal is observed, and we set world leading limits on heavy QCD axions, as well as for the Higgs portal scalar among dedicated searches. Limits are also presented in a model-independent way applicable to any new physics model predicting the process , for a LLP . This result is the first search for new physics performed with the ICARUS detector at Fermilab. It paves the way for the future program of LLP searches at ICARUS. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Abstract SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist. We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds.more » « less
- 
            Free, publicly-accessible full text available July 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available